Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient.

نویسندگان

  • Blake R Klyen
  • Loretta Scolaro
  • Tea Shavlakadze
  • Miranda D Grounds
  • David D Sampson
چکیده

We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm(-1)) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm(-1)), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm(-1)) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm(-1)) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography.

Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for...

متن کامل

Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice.

Three-dimensional optical coherence tomography (3D-OCT) is used to evaluate the structure and pathology of regenerating mouse skeletal muscle autografts for the first time. The death of myofibers with associated inflammation and subsequent new muscle formation in this graft model represents key features of necrosis and inflammation in the human disease Duchenne muscular dystrophy. We perform 3D...

متن کامل

Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography.

Minimally invasive, high-resolution imaging of muscle necrosis has the potential to aid in the assessment of diseases such as Duchenne muscular dystrophy. Undamaged muscle tissue possesses high levels of optical birefringence due to its anisotropic ultrastructure, and this birefringence decreases when the tissue undergoes necrosis. In this study, we present a novel technique to image muscle nec...

متن کامل

In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography.

Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber...

متن کامل

Parametric imaging of cancer with optical coherence tomography.

We present a parametric optical coherence tomography (OCT) technique to improve contrast between malignant and healthy non-neoplastic tissue. The technique incorporates a fully automated method to extract tissue attenuation characteristics. Results are represented visually as a parametric en face image, where the parameter used for contrast is indicative of the relative optical attenuation coef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical optics express

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2014